• SCIENTIFIC HIGHLIGHTS

Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3

Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3

Scientific Highlights Materials for energy and enviroment 18 September 2018 337 hits jags

J. A. Silva-Guillén*, E. Canadell, F. Guinea, and R. Roldán. ACS Photonics, 2018, 5 (8), pp 3231–3237

DOI: 10.1021/acsphotonics.8b00467

The benefits of two-dimensional (2D) materials for applications in nanotechnology can be widened by exploiting the intrinsic anisotropy of some of those crystals, being black phosphorus the most well-known example. In this work we demonstrate that the anisotropy of TiS3, which is even stronger than that of black phosphorus, can be tuned by means of strain engineering. Using density functional theory calculations, we find that the ellipticity of the valence band can be inverted under moderate compressive strain, which is accompanied by an enhancement of the optical absorption. It is shown that the strain tuning of the band anisotropy can be exploited to focus plasmons in the desired direction, a feature that could be used to design TiS3nanostructures with switchable plasmon channeling.

 

See more posts on ICMAB related to: Materials for energy and enviroment
See more posts on ICMAB related to: J. A. Silva-Guillén , E. Canadell , F. Guinea , R. Roldán

Related Topics: Materials for energy and enviroment

Also on ICMAB...

Search

Your experience on this site will be improved by allowing cookies Cookie Settings