logo icmab ochoa 02 01 logo icmab ochoa 02 01
  • NEWS

Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model

Si-Ming Yu, Laura Gonzalez-Moragas, Maria Milla, Androniki Kolovou, Rachel Santarella-Mellwig, Yannick Schwab, Anna Laromaine, Anna Roig, Acta BiomaterialiaVolume 43, 1 October 2016, Pages 348–357  http://dx.doi.org/10.1016/j.actbio.2016.07.024

Nanoparticles which surface adsorb proteins in an uncontrolled and non-reproducible manner will have limited uses as nanomedicinal products. A promising approach to avoid nanoparticle non-specific interactions with proteins is to design bio-hybrids by purposely pre-forming a protein corona around the inorganic cores. Here, we investigate, in vitroand in vivo, the newly acquired bio-identity of superparamagnetic iron oxide nanoparticles (SPIONs) upon their functionalization with a pre-formed and well-defined bovine serum albumin (BSA) corona. Cellular uptake, intracellular particle distribution and cytotoxicity were studied in two cell lines: adherent and non-adherent cells. BSA decreases nanoparticle internalization in both cell lines and protects the iron core once they have been internalized. The physiological response to the nanoparticles is then in vivo evaluated by oral administration to Caenorhabditis elegans, which was selected as a model of a functional intestinal barrier. Nanoparticle biodistribution, at single particle resolution, is studied by transmission electron microscopy. The analysis reveals that the acidic intestinal environment partially digests uncoated SPIONs but does not affect BSA-coated ones. It also discloses that some particles could enter the nematode’s enterocytes, likely by endocytosis which is a different pathway than the one described for the worm nutrients.

Statement of Significance

Unravelling meaningful relationships between the physiological impact of engineered nanoparticles and their synthetic and biological identity is of vital importance when considering nanoparticles biomedical uses and when establishing their nanotoxicological profile. This study contributes to better comprehend the inorganic nanoparticles’ behavior in real biological milieus. We synthesized a controlled pre-formed BSA protein corona on SPIONs to lower unspecific cell uptake and decrease nanoparticle fouling with other proteins. Such findings may be of relevance considering clinical translation and regulatory issues of inorganic nanoparticles. Moreover, we have advanced in the validation of C. elegans as a simple animal model for assessing biological responses of engineering nanomaterials. The physiological response of BSA coated SPIONs was evaluated in vivo after their oral administration to C. elegans. Analyzing ultra-thin cross-sections of the worms by TEM with single-particle precision, we could track NP biodistribution along the digestive tract and determine unambiguously their translocation through biological barriers and cell membranes.

Related Topics: Biomaterials and materials for drug delivery, therapy, diagnostics and sensing

Also on ICMAB...

  • Open call: L'ORÉAL-UNESCO Research Awards for Women in Science 2017

    20 April 2017 301 hit(s)

    The L'ORÉAL-UNESCO For Women in Science Program opens the call for its 2017/18 Research Awards. In this edition, five prizes will be awarded, each of 15,000 €, to the Research Centers that support the projects developed in the center by Spanish women scientists during the year 2018. 
  • Dr. Anna Laromaine attended the NanoTech 2017 in Tokyo, invited by the Presidency of the CSIC

    06 March 2017 868 hit(s)

    Dr Laromaine had the opportunity to present the patent "Method for the regeneration of plant tissues" developed by ICMAB-CSIC together with the CRAG (Agrigenomical Research Center) to several companies.
  • Heavy metals sensor platform developed during the COMMON SENSE project

    31 January 2017 737 hit(s)

    A sensor platform to detect heavy metals has been developed within the COMMON SENSE project and presented during its final event, last Friday 27th January. The partners that participated in the development of this sensor platform are Dublin City University (DCU), DropSens, National Center of Microelectronics (CNM-IMB) (CSIC), and the Nanoparticles and Nanocomposites Group (NN) at ICMAB (CSIC). 
  • Thesis Laura Gonzalez-Moragas (PHOTOS)

    16 December 2016 1151 hit(s)

    Congratulation to Laura Gonzalez-Moragas for obtaining her PhD

Trending on ICMAB...

Your experience on this site will be improved by allowing cookies Cookie Settings